Advert

Accueil » VENDOR JOINT MARKETING APPLIED SYSTEMS

Au Canada, le secteur de l’assurance de biens et de dommages (P&C) est à la traîne par rapport aux autres secteurs en ce qui concerne la connectivité au sein du réseau de courtiers. En conséquence, les courtiers sont confrontés à des frictions dans les processus et à une duplication des efforts (double saisie), ce qui entraîne des dépenses inutiles et une expérience client loin d’être idéale.

Les courtiers utilisent leurs propres systèmes pour gérer leurs clients et les assureurs utilisent les leurs. La saisie initiale des données est effectuée par le courtier dans son BMS, puis réintroduite (par le courtier) dans le portail de l’assureur.

Cette approche nécessite une double saisie par le courtier et introduit des retards et des problèmes de qualité des données, qui à leur tour nécessitent une intervention manuelle et ont un impact négatif sur l’expérience du client final.

Alors que la plupart des autres secteurs ont fait de grands progrès dans le partage et la transmission des données en temps réel tout au long des étapes de la chaîne de valeur, la connectivité des données en temps réel en reste à ses balbutiements dans le secteur de l’assurance de biens et de dommages.

Cependant, des progrès sont réalisés. Applied Systems a récemment introduit de nouvelles fonctionnalités intéressantes, notamment :

 

Read More

Veiller à l’harmonisation avec les cadres réglementaires et les normes

Les principes s’harmoniseront avec les lignes directrices internationales en matière d’IA (p. ex., ISO 42001, cadres de l’OCDE) et les règlements propres à certains secteurs (p. ex., RIBO, BSIF, AMF) suivies par les parties prenantes. Le respect des normes juridiques aidera les organisations à composer avec les exigences des différents territoires, à promouvoir des pratiques durables et à prévenir l’utilisation abusive des données d’IA.

Encourager l’innovation responsable en IA

Les principes encourageront la communauté des courtiers à innover de manière responsable en développant des systèmes d’IA qui donnent la priorité au bien-être des consommateurs, à l’inclusion et à l’équité, tout en évaluant les répercussions sociales, environnementales et économiques de leurs solutions d’IA.

Promouvoir la responsabilisation dans la surveillance de l’IA

Les principes d’IA renforceront la responsabilisation à tous les niveaux des organisations et des tiers collaborateurs. La détermination des rôles et la surveillance humaine dans les processus d’IA améliorent la traçabilité, permettent la prise de décisions éclairées et intègrent des mécanismes de recours éthique lorsque des erreurs ou des résultats défavorables se produisent.

Assurer la confiance des consommateurs et l’équité

Les principes de gouvernance de l’IA appuient l’engagement envers la transparence, l’équité et la responsabilisation. Des résultats explicables et une communication proactive avec les consommateurs favorisent la confiance parmi la
communauté des courtiers en général, leurs clients et les parties prenantes externes.

Soutenir les normes de déontologie et la collaboration des parties prenantes

En intégrant les principes de gouvernance de l’IA, les courtiers membres peuvent s’aligner sur leur mission de favoriser une culture éthique parmi leurs parties prenantes. Lutter contre les préjugés, veiller à la protection des consommateurs et promouvoir l’inclusion, ce qui renforcera l’engagement envers des pratiques éthiques en matière d’IA en collaboration avec les intervenants du secteur, les organismes de réglementation et les fournisseurs de solutions tiers.

Cas d’utilisation no 2 de la preuve de concept pour l’IA : recherche de couverture et analyse des lacunes assistées par l’IA

Exigences techniques

Modèles d’IA avec contexte sur les données comparatives sectorielles et les structures des polices

Interprétation des modalités, avenants et clauses des polices existantes

Intégration au SGC pour récupérer le profil du client, les informations sur l’exposition et les données sur les polices passées

Fonctionnalités de sécurité et de conformité des données pour protéger les informations des clients

Périmètre fonctionnel

Analyser les données soumises par les clients, y compris les expositions, le contexte commercial, etc.

Extraire et interpréter les modalités des polices existantes (p. ex., avenants, exclusions, clauses)

Comparer avec les modèles de couverture habituels et les indications sectorielles pour identifier les lacunes de couverture

Établir l’ordre de priorité des lacunes de couverture identifiées et fournir une justification fondée sur des considérations (p. ex., normes sectorielles, risque)

Recommander des produits et des options de couverture adaptés au profil du client et générer des résumés pour les discussions avec le client

Cas d’utilisation de la preuve de concept pour l’IA no 1 : intégration des clients et prise de données alimentées par l’IA

Exigences techniques

Intégration au SGC : Intégration au SGC pour la saisie et le stockage sécurisés des données

Intégration au ARS appliqué : Intégration au ARS appliqué pour activer la génération automatique de soumissions

Analystes spécialisés pour le renouvellement : Capacité d’analyse de documents pour 5 à 6 assureurs avec une grande précision

Cadre d’extensibilité : Architecture modulaire pour prendre en charge les améliorations futures et l’automatisation accrue

Périmètre fonctionnel

Robot conversationnel pour l’intégration des clients : Recueillir les renseignements des clients, répondre aux questions d’intégration et guider les utilisateurs dans le processus d’intégration

Collecte et stockage des données : Saisir et stocker les données recueillies directement dans le SGC du courtier

Traitement des documents : Permettre aux clients de téléverser des documents de renouvellement et extraire des données clés pour accélérer le processus d’intégration

Génération des soumissions : Générer des soumissions en fonction des informations recueillies